377 words
2 minutes
[CS5340] Markov Random Field (Undirected Graphical Model, UGM)

Conditional Independence#

xaxcxb{p(xa,xcxb)=p(xaxb)p(xcxb)p(xaxb,xc)=p(xaxb)x_a⊥x_c | x_b ⇨ \begin{cases} p(x_a,x_c|x_b)=p(x_a|x_b)p(x_c|x_b) \\ p(x_a|x_b,x_c) = p(x_a|x_b)\end{cases}

5 Rules of Conditional Independence#

R1 Symmetry: xyyxx⊥y ⇨ y⊥x#

R2 Decomposition: xA,bxAx⊥{A,b} ⇨ x⊥A & xbx⊥b#

  • pf:
    XA,Bp(X,A,B)=p(X)p(A,B)p(X,A)=p(X,A,B)dB=p(X)p(A,B)dB=p(X)p(A,B)dB=p(X)p(A)X⊥{A,B} ⇨ p(X,A,B) = p(X)p(A,B) \\ p(X,A) = \int p(X,A,B)dB = \int p(X)p(A,B)dB \\ = p(X) \int p(A,B)dB = p(X)p(A)

R2 Reverse: xAx⊥A & xbx⊥b (DOESN”T hold)#

  • pf:
    XOR Probability Counter-Example

R3 Weak Union: XA,BXABX⊥{A,B} ⇨ X⊥A|B & XBAX⊥B|A#

  • pf: XA,Bp(X)=p(XA,B)X⊥{A,B} ⇨ p(X) = p(X|A,B)
    XA,BXBX⊥{A,B} ⇨ X⊥B p(X)=p(XA,B)=p(XA)p(X) = p(X|A,B) = p(X|A), similar proof with p(XB)p(X|B)

R3 Reverse: XABX⊥A|B & XBAX⊥B|AXA,BX⊥{A,B}#

  • pf:
    XABp(xA,B)=p(xB)X ⊥ A | B \Rightarrow p(x|A,B) = p(x|B)
    XBAp(xA,B)=p(xA)X⊥B|A \Rightarrow p(x|A,B) = p(x|A)
    p(x)=p(x,A)dA=p(cA)p(A)dA=p(xA)p(A)dA=p(xB)p(x) = \int p(x,A)dA = \int p(c|A)p(A)dA = p(x|A) \int p(A)dA = p(x|B)

R4 Contraction: XABX⊥A|B and XBX{A,B}X⊥B ⇨ X⊥\{A,B\}#

  • pf:
    XABX⊥A|B and XBp(X{A,B})=p(XB)=p(X)XA,BX⊥B ⇨ p(X|\{A,B\}) \\ = p(X|B) = p(X) ⇨ X⊥{A,B}

R4 Reverse: X{A,B}X⊥\{A,B\}XABX⊥A|B and XBX⊥B#

  • pf:
    by weak union, x{A,B}x⊥ \{A,B\}xABx⊥A|B by decomposition, x{A,B}x⊥\{A,B\}xBx⊥B

R5 Intersection: XYW,ZX⊥Y|{W,Z} and XWY,ZXY,WZX⊥W|{Y,Z} ⇨ X⊥ {Y,W}|Z#

  • pf: XYW,Zp(XY,W,Z)=p(XW,Z)X⊥Y|{W,Z} ⇨ p(X|Y,W,Z) = p(X|W,Z)
    XWY,Zp(XY,W,Z)=p(XY,Z)X⊥W|{Y,Z} ⇨ p(X|Y,W,Z) = p(X|Y,Z)
    p(XW,Z)=p(XY,Z)p(X|W,Z) = p(X|Y,Z)
    p(XZ)=p(X.WZ)dW=p(XW,Z)p(WZ)dW=p(XY,Zp(WZ)dW=p(XY,Z)p(X|Z) = \int p(X.W|Z)dW = \int p(X|W,Z)p(W|Z)dW = p(X|Y,Z \int p(W|Z)dW = p(X|Y,Z)
    p(XW,Y,Z)=p(XY,Z)=p(XZ)XW,YZp(X|W,Y,Z) = p(X|Y,Z) = p(X|Z) ⇨ X⊥{W,Y}|Z

R5 Reverse: X{Y,W}ZX⊥ \{ Y,W \}|ZXYW,ZX⊥Y|{W,Z} and XWY,ZX⊥W|{Y,Z}#

  • pf:
    X{Y,W}Zp(xZ)=p(xW,Y,Z)X⊥ \{ Y,W \}|Z \Rightarrow p(x|Z) = p(x|W,Y,Z)
    X{Y,W}ZxwZX⊥ \{ Y,W \}|Z \Rightarrow x⊥w|Z (decomposition)
    p(xZ)=p(xW,Y,Z)=p(xY,Z)xW{Y,Z}p(x|Z) = p(x|W,Y,Z) = p(x|Y,Z) \Rightarrow x⊥W| \{ Y,Z \}

Independence Map (I-Map)#

  • I(p)I(p) represents all independencies in p(x1,...,xN)p(x_1, ..., x_N)
  • GG is valid if I(G)I(P)I(G) \le I(P)

Markov Property#

markov property

Global Markov Property#

  • xAxBxCx_A ⊥ x_B | x_C iff CC seperated AA from BB
  • global markov property

Local Markov Property#

  • xSV\{mb(xs),xs}mb(xs)x_S ⊥ V\backslash \{ mb(x_s), x_s\} | mb(x_s), where mb(xs)mb(x_s) is the markov blanket of xsx_s
  • local markov property

Pairwise Markov Property#

  • xsxtv\{xs,xt}x_s ⊥ x_t | v \backslash \{ x_s, x_t\}
  • xs,xtx_s, x_t condition independence given the rest if no direct edge between
  • pairwise markov property

Parameterization of MRF#

  • if xx and yy are not directed linked \Rightarrow they are conditionally independent
    \Rightarrow must place xx and yy in different factors (local functions)
  • 𝜓(xc)𝜓(x_c): the local function of maximal clique cc
  • maximal clique: clique that cannot include additional nodes (fully connected subset of nodes)

Hammersley-Clifford Theorem#

  • p(yθ)=1Z(θ)c𝜓c(ycθcp(y| \theta) = \frac {1}{Z(\theta)} \prod_c 𝜓_c(y_c| \theta_c (product of local function of max cliques)
    • Z(θ)Z(\theta): for normalization (constant)

Log-Linear Potential Function (Maximum entropy)#

  • logp(yθ)=cϕc(yc)TθclogZ(θ)log p(y|\theta) = \sum_c \phi_c(y_c)^T \theta_c - log Z(\theta) (can reduce parameter)

Conditional Random Field (Discriminative random field)#

  • p(yx,w)=1Z(x,w)c𝜓c(ycx,w)p(y | x,w) = \frac {1}{Z(x,w)} \prod_c 𝜓_c (y_c |x,w)
  • 𝜓c(ycx,w)=exp(wcTϕ(x,yc)))𝜓_c (y_c |x,w) = \exp (w_c^T \phi (x,y_c)))
[CS5340] Markov Random Field (Undirected Graphical Model, UGM)
https://itsjeremyhsieh.github.io/posts/cs5340-3-markov-random-field/
Author
Jeremy H
Published at
2024-08-26