[CS5340] Introduction to Probabilistic Reasonings
Probability#
Probability space (Ω,E,P)#
- Ω: sample space, set of all possible outcomes
- E: event space, ⊆2Ω
- must contain ∅ and Ω
- closed under countable union: αi∈E→∪αi∈E
- closed under complements: α∈E→Ω−α∈E
- P(α)≥0,P(Ω)=1
- if α∩β=∅→P(α∪β)=P(α)+P(β)
Probability distribution#
- Discrete: Probability mass function ∑i=1KP(x=xi)=1
- Continuous: Probability density function ∫val(x)p(x)dx=1
Marginalization (sum rule)#
- given ∫∫p(x,y)dxdy=1
- Eliminate = sum over
- Continuous case: ∫p(x,y)dy=p(x), ∫p(x,y)dx=p(y)
- Discrete case: ∑yp(x,y)=p(x), ∑xp(x,y)=p(y)
Conditional probability (product rule)#
- p(x∣y)=p(y)p(x,y)
- p(x,y)=p(x∣y)p(y)
- can be extended to multiple random variable
- p(w,x,y,z)=p(w,x,y∣z)p(z) =p(w,x∣y,z)p(y∣z)p(z) =p(w∣x,y,z)p(x∣y,z)p(y∣z)p(z)
Baye’s rule#
- since p(x,y)=p(x∣y)p(y)=p(y∣x)p(x),
- p(y∣x)=p(x)p(x∣y)p(y)
- p(y∣x): posterior
- p(x∣y): likelihood
- p(y): prior
- p(x): evidence
Independence#
- p(x∣y)=p(x), knowing y doesn’t give any information on x
- therefore, p(x,y)=p(x∣y)p(y)=p(x)p(y)
Expectation#
- E[f[x]]=∫f[x]p(x)dx
- R1: E[k]=k (expected value of a constant is a constant)
- R2: E[k×f[x]]=k×E[f[x]]
- R3: E[f[x]+g[x]]=E[f[x]]+E[g[x]]
- R4: E[f[x]g[x]]=E[f[x]]×E[g[x]] if X,Y are independent
Conjugate distribution (Conjugate prior)#
- used for modelling parameter of probability distribution
- prior and posterior are in the same distribution family
- if p(x∣θ) is Normal distribution, then p(θ∣x) will also be in the same family
- 如果後驗與先驗是同一個指數族,那就稱那個先驗為共軛先驗